Assiste.com
cr 01.04.2012 r+ 22.10.2024 r- 22.10.2024 Pierre Pinard. (Alertes et avis de sécurité au jour le jour)
Dossier (collection) : Encyclopédie |
---|
Introduction Liste Malwarebytes et Kaspersky ou Emsisoft (incluant Bitdefender) |
Sommaire (montrer / masquer) |
---|
Condensat est le mot français pour désigner le calcul de l'empreinte du contenu d'un fichier, selon divers algotithmes (sans jamais tenir compte de son enveloppe).
En informatique, le terme consacré et utilisé est HashCode.
Voir HashCode
|
La réputation de l'algorithme de calcul d'un hashcode (calcul d'un condensat - fonction de hachage) est de ne jamais produire deux hashcode identiques si les objets (contenu d'un fichiers) contiennent la moindre différence. La fonction de hachage doit donc produire une clé unique d'identification d'une donnée unique (calcul homogène).
|
Réputation des fonctions de hachage
On voit souvent, en matière de sécurité informatique, principalement avec les services d'analyses antivirus, qu'il ne faut pas/plus identifier le contenu d'un fichier avec certaines fonctions de hachage (hashcodes, condensats, Empreinte cryptographique), dont les fonctions MD5 et SHA-1, car les créations de collisions, les attaques en force brute ou les utilisations de tables Arc-en-ciel permettent de casser l'unicité du condensat ou de remonter à son contenu crypté. Le tableau suivant, établi par les auteurs de Whirlpool (dernière version de ce tableau le 7 novembre 2017), donne l'état de l'art des principales fonctions de hachages et leurs poursuites de résistance ou leurs échecs aux attaques.
Le symbole est utilisé pour désigner une attaque qui a été conduite avec succès pour casser une fonction de hachage (par exemple, en produisant explicitement une collision), ou si la complexité de l'attaque est si faible qu'il ne serait pas difficile de la conduire avec les technologies actuelles.
Le symbole indique une rupture théorique (plus rapide que les attaques par force brute ou les attaques par le paradoxe des anniversaires) ou une indication explicite des auteurs de la fonction qu'il faut l'éviter.
Le symbole signifie que la conception de la fonction ou une version réduite de celle-ci a été analysée par des tiers, repoussant les limites des techniques de cryptanalyse connues sans indiquer de faiblesse dans la conception complète.
Nom | Ref. | Version | Auteur(s) | Taille du bloc | Taille du condensat | Tours | Attaque(s) |
---|---|---|---|---|---|---|---|
AR | 1992 | ISO | ? | ? | ? | ||
Boognish | 1992 | Daemen | 32 | up to 160 | NA | ||
Cellhash | 1991 | Daemen, Govaerts, Vandewalle | 32 | up to 256 | NA | ? | |
FFT-Hash I | 1991 | Schnorr | 128 | 128 | 2 | ||
FFT-Hash II | 1992 | Schnorr | 128 | 128 | 2 | ||
FSB | 2005 | Augot, Finiasz, Sendrier | 336, 680, 1360 | 320, 400, 480 (†) | NA | ? | |
GOST R 34.11-94 | 1990 | Government Committee of Russia for Standards | 256 | 256 | NA | ? | |
HAS-160 | 2005 | Telecommunications Technology Association | 512 | 160 | 4×20 | ? | |
HAVAL | 1994 | Zheng, Pieprzyk, Seberry | 1024 | 128, 160, 192, 224, 256 | 3×32, 4×32, 5×32 | ||
LASH-n | 2006 | Bentahar, Page, Saarinen, Silverman, Smart | 4×n | n | NA | ? | |
MAA (‡) | 1988 | ISO | 32 | 32 | NA | ||
MAELSTROM-0 | 2006 | Gazzoni Filho, Barreto, Rijmen | 1024 | up to 512 | 10 | ? | |
MD2 | 1989 | Rivest | 512 | 128 | 18 | ||
MD4 | 1990 | Rivest | 512 | 128 | 3×16 | ||
1992 | Rivest | 512 | 128 | 4×16 | |||
N-Hash | 1990 | Miyaguchi, Ohta, Iwata | 128 | 128 | ? 8 | ||
PANAMA | 1998 | Daemen, Clapp | 256 | unlimited | NA | ||
Parallel FFT-Hash | 1993 | Schnorr, Vaudenay | 128 | 128 | 5 | ? | |
RADIOGATÚN[w] | 2006 | Bertoni, Daemen, Peeters, van Assche | 3×w | unlimited | NA | ? | |
RIPEMD | 1990 | The RIPE Consortium | 512 | 128 | 4×16 | ||
RIPEMD-128 | 1996 | Dobbertin, Bosselaers, Preneel | 512 | 128 | 4×16 | ? | |
RIPEMD-160 | 1996 | Dobbertin, Bosselaers, Preneel | 512 | 160 | 5×16 | ? | |
SHA-0 | 1991 | NIST/NSA | 512 | 160 | 4×20 | ||
1993 | NIST/NSA | 512 | 160 | 4×20 | |||
SHA-1-IME | 2005 | Jutla, Patthak | 512 | 160 | 80 | ? | |
2004 | NIST/NSA | 512 | 224 | 64 | |||
2000 | NIST/NSA | 512 | 256 | 64 | |||
2000 | NIST/NSA | 1024 | 384 | 80 | |||
2000 | NIST/NSA | 1024 | 512 | 80 | |||
SMASH | 2005 | Knudsen | 256 | 256 | NA | ||
Snefru-n | 1990 | Merkle | 512-n | n | ? 8 | ||
StepRightUp | 1995 | Daemen | 256 | 256 | NA | ||
Subhash | 1992 | Daemen | 32 | up to 256 | NA | ? | |
Tiger | 1996 | Anderson, Biham | 512 | 192 | 3×8 | ||
2000 | Barreto, Rijmen | 512 | 512 | 10 | ? | ||
Name | Ref. | Version | Author(s) | Block Size | Digest Size | Rounds | Attack(s) |
(†) Par sa propre nature, FSB (Fast Syndrome-Based) est moins résistant à la recherche de collision que les attaques par le paradoxe des anniversaires. Pour cette raison, sa taille de résumé (condensat) doit toujours être supérieure à deux fois la sécurité de bit souhaitée.
(‡) MAA est un code d'authentification de message (MAC - Message Authentication Code) plutôt qu'une fonction de hachage. Il a été inclus ici en raison de son importance dans le cadre de la norme ISO 8731-2.
Categorie | Autheur(s) | Ref. |
---|---|---|
Design | Damgård | |
Analyses | Black, Rogaway, Shrimpton | |
Attaques | Hoch, Shamir |
Les encyclopédies |
---|